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Summary

In Schizosaccharomyces pombe the expression of the zrt1 zinc uptake gene is tightly regulated by 

zinc status. When intracellular zinc levels are low, zrt1 is highly expressed. However, when zinc 

levels are high, transcription of zrt1 is blocked in a manner that is dependent upon the transcription 

factor Loz1. To gain additional insight into the mechanism by which Loz1 inhibits gene expression 

in high zinc we used RNA-seq to identify Loz1-regulated genes, and ChIP-seq to analyze the 

recruitment of Loz1 to target gene promoters. We find that Loz1 is recruited to the promoters of 27 

genes that are also repressed in high zinc in a Loz1-dependent manner. We also find that the 

recruitment of Loz1 to the majority of target gene promoters is dependent upon zinc and the motif 

5’-CGN(A/C)GATCNTY-3’, which we have named the Loz1 Response Element (LRE). Using 

reporter assays we show that LREs are both required and sufficient for Loz1-mediated gene 

repression, and that the level of gene repression is dependent upon the number and sequence of 

LREs. Our results elucidate the Loz1 regulon in fission yeast and provide new insight into how 

eukaryotic cells are able to respond to changes in zinc availability in the environment.
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In fission yeast the transcription factor Loz1 plays a central role in zinc homeostasis by inhibiting 

gene expression when zinc is in excess. Here we show that Loz1 DNA binding activity is 

dependent upon cellular zinc status and that Loz1 binds in a site-specific manner to Loz1 

Response Elements (LREs) that are located in target genes promoters. These studies provide new 

mechanistic insight into Loz1 function, and highlight new pathways that are regulated by zinc.
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Introduction

A diverse array of proteins require zinc for their function, including transcription factors 

containing C2H2-type zinc finger domains, and many enzymes that are required for basic 

cellular processes including: DNA replication, transcription, translation, and respiration 

(Andreini et al., 2009, Coleman, 1992). As zinc ions can also be toxic in excess, cells 

require homeostasis mechanisms to maintain sufficient levels of zinc for incorporation into 

newly synthesized zinc proteins and at the same time do not inhibit growth (Bird, 2015). The 

importance of these zinc homeostasis mechanisms is underscored by the fact that multiple 

genetic diseases can result from zinc deficiency or imbalances in zinc ion levels including: 

Acrodermatitis enteropathica; transient neonatal zinc deficiency; early onset 

agammaglobulinemia; and the spondylocheirodysplastic form of Ehlers-Danlos syndrome 

(Wang et al., 2004, Jeong et al., 2012, Chowanadisai et al., 2006, Anzilotti et al., 2019).
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The budding yeast Saccharomyces cerevisiae has been an important model system for 

deciphering mechanisms of cellular zinc homeostasis. In this yeast the transcription factor 

Zap1 plays a key role in the zinc starvation response by controlling the expression of genes 

required for zinc acquisition (ZRT1, ZRT2, and FET4) and the release of zinc from 

intracellular stores (ZRT3) (Eide, 2009, Wilson & Bird, 2016). When zinc levels are low, 

Zap1 binds to zinc responsive elements (ZREs) that are located within the promoters of 

these genes, increasing gene expression. In contrast, when zinc levels are high, Zap1 loses 

its ability to bind to DNA and to activate gene expression. Zap1 also controls how cells 

allocate zinc by regulating the expression of ZRR1 and ZRR2 - the non-coding RNAs that 

inhibit the expression of genes encoding alcohol dehydrogenase 1 and 3, respectively (Bird 

et al., 2006). As alcohol dehydrogenases are abundant zinc-requiring proteins, the inhibition 

of ADH1 and ADH3 gene expression in low zinc helps cells to conserve zinc ions for more 

important functions.

In addition to having a primary role in zinc homeostasis, Zap1-dependent changes in gene 

expression alter cell metabolism so that they are able to survive longer periods of zinc 

starvation. Under these more severe conditions Zap1 induces the expression of additional 

genes that are required for stress resistance, cell wall function, and secretory pathway 

function (Wu et al., 2008). Examples of these second-response genes include TSA1, which 

encodes a peroxiredoxin that has a dual role as a peroxidase and a holdase, and ZRG17, 

which encodes a CDF family member that is required for zinc transport from the cytoplasm 

into the endoplasmic reticulum (Wu et al., 2007, Wu et al., 2011). Further analyses of these 

genes and their protein products have shown that the holdase function of Tsa1 is critical for 

survival during severe zinc starvation, and that in the absence of the Zap1-dependent 

increase in ZRG17 expression, cells experience increased protein unfolding in the 

endoplasmic reticulum (MacDiarmid et al., 2013, Choi et al., 2018). Studies of these Zap1 

target genes therefore suggest that cells have programmed responses to counter stresses that 

arise from zinc starvation.

In the fission yeast Schizosaccharomyces pombe multiple zinc homeostasis genes are 

regulated at a transcriptional level in response to zinc status, including zrt1 and adh1 (Dainty 

et al., 2008, Ehrensberger et al., 2013). However, in this yeast this transcriptional control is 

dependent upon a different transcription factor called Loz1. In contrast to Zap1, which has a 

primary role in activating gene expression in low zinc, deletion of the loz1 gene leads to the 

constitutive expression of zrt1 and a regulatory adh1 antisense transcript (adh1AS), 

suggesting that the primary function of Loz1 is to repress gene expression when zinc is in 

excess (Corkins et al., 2013). Studies with Loz1 have also revealed different genes and 

pathways that are regulated by zinc availability. One novel Loz1 target gene is gcd1, which 

encodes glucose dehydrogenase 1 (Corkins et al., 2017). In fission yeast this enzyme is part 

of the gluconate shunt which is a secondary route for directing glucose into the pentose 

phosphate pathway (Tsai et al., 1995, Corkins et al., 2017). As the pentose phosphate 

pathway plays a primary role in the regeneration of NADPH and produces ribose-5 

phosphate sugars which are precursors of many other metabolic intermediates, the regulation 

of gcd1 by Loz1 suggests that increased levels of one or more of these intermediates may be 

important for growth or survival in low zinc conditions.
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The goals of this study were to further our knowledge of zinc homeostasis by identifying 

additional genes that are regulated by Loz1 and to test whether Loz1 directly binds to its 

target gene promoters to repress gene expression. By using ChIP-seq we show that Loz1 

binds in a zinc-dependent manner to the sequence CGN(A/C)GATCNTY when zinc is in 

excess, highlighting a mechanism by which Loz1 is able to specifically repress target gene 

expression in high zinc. We also find that in high zinc Loz1 represses the expression of 27 

genes that encode proteins and ncRNAs required for zinc homeostasis, as well as 

carbohydrate metabolism, the transport of small molecules, and non-covalent protein 

folding.

Results

Loz1 binds to target genes promoters in high zinc

In our previous studies we found that Loz1 negatively auto-regulates its own expression 

which leads to very low levels of the active Loz1 repressor accumulating in high zinc 

conditions (Corkins et al., 2013). When we attempted to perform ChIP analysis using a 

functional Loz1GFP fusion protein that was expressed from the loz1 promoter, we were 

unable to immunoprecipitate Loz1GFP from cells grown in high zinc, potentially due to the 

low levels of Loz1GFP protein that accumulate under this condition. To overcome this 

limitation, we generated a new construct to express Loz1GFP from a weaker derivative of 

the pgk1 promoter that contained a deletion within the canonical TATA box (pgk1ΔTATA). To 

compare the strength of the pgk1ΔTATA promoter to the loz1 promoter (loz1p), strains 

expressing Loz1GFP from these promoters were grown overnight in a zinc-limited minimal 

medium (ZL-EMM) (Choi et al., 2018) supplemented with 0 (-Zn) or 100 μM Zn (+Zn) and 

crude protein extracts prepped for immunoblot analysis. The immunoblot analysis revealed 

that the pgk1ΔTATA-driven Loz1GFP accumulated in both low and high zinc conditions (Fig. 

1A). When compared to cells expressing Loz1GFP from the loz1 promoter, expression from 

the pgk1ΔTATA promoter resulted in ~ 2-fold and ~ 7-fold higher levels of Loz1GFP in low 

and high zinc conditions, respectively.

To test whether expression of loz1GFP from the pgk1ΔTATA promoter would affect Loz1-

mediated gene expression, we co-expressed the Loz1GFP alleles described above with a 

zrt1-lacZ reporter and assayed β-galactosidase activity over a range of zinc levels. In cells 

expressing pgk1ΔTATA-Loz1GFP, growth in 100 μM zinc resulted in an ~600-fold reduction 

in zrt1-lacZ reporter activity, indicating that the activity of this fusion protein was regulated 

by zinc (Fig. 1B). However, at 0 μM zinc zrt1-lacZ reporter activity was 3-fold lower than 

that observed in loz1Δ expressing loz1p-Loz1GFP, suggesting that over-expression of Loz1 

also leads to higher levels of gene repression. When the association of pgk1ΔTATA-Loz1GFP 

with the zrt1 and adh4 promoters was examined using ChIP analysis, there was a large 

enrichment of Loz1GFP at both of these promoters in high zinc conditions (Fig. 1C). A 

similar enrichment was not observed at a promoter of a control gene (pci2) that is not 

regulated by zinc (Dainty et al., 2008, Ehrensberger et al., 2013). Although over-expression 

of Loz1 from the pgk1ΔTATA promoter leads to higher levels of gene repression, these 

preliminary ChIP analyses suggested that the pgk1ΔTATA-driven Loz1GFP could be used to 

examine zinc-dependent changes in Loz1 DNA binding activity.
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To determine if the recruitment of Loz1 to other promoter regions was dependent upon zinc, 

loz1Δ cells expressing pgk1ΔTATA-Loz1GFP were grown in ZL-EMM supplemented with 0 

or 100 μM zinc, and purified DNA associated with Loz1GFP further analyzed by ChIP-seq 

(see Experimental procedures). 136 peaks were above peak-ID thresholds in at least three 

independent repeats. 98 of these peaks were located upstream of protein-coding genes or 

non-coding RNAs (Fig. 2A), whereas the remaining 38 peaks were detected within the 

coding regions of tRNAs or other small RNAs. Of the 98 peaks that were located within 

promoter regions, 60 were detected during growth in high zinc, 34 were detected in both 

high and low zinc conditions, and 4 were detected in low zinc only (Table S1 and S2). The 

most abundant peaks were detected in the high zinc conditions and included peaks mapping 

to the promoter regions of the known Loz1 target genes adh4, zrt1, and the adh1AS 
transcript (Fig. 2B). We also determined which peaks displayed a differential binding pattern 

in response to cellular zinc status. For these analyses we defined differential binding as a 

Loz1 peak that displayed a 2-fold increase in one condition as compared to the other 

condition. 63 Loz1 binding peaks were identified that were enriched in cells grown in high 

zinc as compared to low zinc, including adh4, zrt1, and adh1AS (Fig. 2C and Table S3). 

Only a single Loz1-binding peak was identified that was enriched in low zinc as compared 

to high zinc. This peak mapped to the promoter region of ght8, which encodes a putative 

hexose transporter.

As the pgk1ΔTATA-driven Loz1GFP protein accumulates at higher levels inside of cells 

relative to the endogenous Loz1 protein, it was possible that some of the ChIP peaks 

identified were false positives arising from over-expression. For example, many of the Loz1-

binding peaks were found in the promoters of highly expressed genes (e.g. pgk1), which are 

commonly found as false positives in ChIP-seq studies (Park et al., 2013). To determine 

which of the genes identified by ChIP-seq were bona fide Loz1 targets, we used RNA-seq to 

identify transcripts that accumulated in wild-type and loz1Δ cells following growth 

overnight in high zinc. As Loz1 is required for transcriptional repression when zinc is in 

excess, we predicted that Loz1 target genes would be: 1) expressed at a higher level in zinc-

replete loz1Δ cells when compared to wild-type cells; 2) would be identified as a target gene 

in the ChIP-seq analysis; and 3) would contain a binding site for Loz1 in their promoter.

In the RNA-seq analysis 126 unique mRNAs accumulated significantly by ≥ 2-fold in zinc-

replete loz1Δ cells. Of these, 24 were also identified as ChIP-seq targets, suggesting that 

these were the genes that were repressed by Loz1 in high zinc under steady state conditions 

(Fig. 3A). In order to validate these results, a number of transcripts were also analyzed by 

RNA blot analysis. In all cases deletion of loz1 led to higher levels of the transcript 

accumulating in zinc-replete cells, consistent with these genes being regulated by Loz1 (Fig. 

3B and 3C). There were also notable differences in the transcript profiles, which could 

potentially reflect variation in the recruitment of Loz1 to each promoter, or combinatorial 

effects of other regulatory proteins. As one example, higher levels of dak2 transcripts were 

detected in loz1Δ cells relative to zinc-limited wild-type cells, suggesting that deletion of 

loz1 results in increased levels of dak2 transcripts by an alternative mechanism. In a few 

cases, known Loz1 targets were identified as strong ChIP targets and their fold induction in 

the RNA-seq analysis did not reach statistical significance (adh1AS), or they were identified 

as strong RNA-seq targets and their ChIP-seq peaks fell just below the threshold peak ID 
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(loz1 and SPBC1348.06c). As the expression of these genes has previously been shown to 

be dependent upon Loz1 (Corkins et al., 2013), they were also included as Loz1 target genes 

in further analyses.

To determine if the genes identified in the RNA-seq and/or ChIP-seq were under the control 

of any common regulatory elements, we next searched the promoter regions and ChIP-seq 

peaks for regulatory DNA motifs using the de novo computational motif discovery program 

Multiple Em for Motif Elicitation (MEME) (Bailey et al., 2009). When the search was 

restricted to ChIP-seq peaks of genes repressed in high zinc in a Loz1-dependent manner, a 

consensus of CGN(A/C)GATCNTY was present in 16 peaks (Fig. 4A), the core of which 

resembled the GNNGATC sequence that was previously suggested to be important for Loz1-

mediated gene repression (Corkins et al., 2013). Related searches with other programs 

including HOMER, CONSENSUS, and Weeder revealed shorter motifs that also had a 

similar core CGNNGATC consensus (Fig. S1). No common consensus was identified when 

all ChIP-seq peaks were included in the analyses, or in ChIP-seq peaks that were not RNA-

seq targets. From here on, the CGN(A/C)GATCNTY element was named the Loz1 Response 

Element (LRE).

The LRE is necessary for Loz1-mediated gene repression

To validate that the LRE was required for Loz1-mediated gene repression, we used site 

directed mutagenesis to introduce nucleotide substitutions in putative elements in a 

SPBC1348.06c-lacZ reporter. We used this reporter as SPBC1348.06c was a highly 

regulated gene in the RNA-seq analysis, and we had previously found that the activity of the 

SPBC1348.06c-lacZ reporter was tightly regulated by Loz1 and zinc (Corkins et al., 2013). 

The MEME analysis indicated that the SPBC1348.06c promoter contained a single LRE (5’-

CGACGATCATG-3’) at nucleotide positions −147 to −137 relative to the translational ATG 

(Fig. 4B). In addition to this element, we identified two closely related sequences at 

positions −380 to −370 (5’-GGAAGATCTAC-3’) and −130 to −140 on the reverse strand 

(5’-CGTAGATCATG-3’). To assess whether these elements were required for Loz1-

mediated gene repression, we generated constructs containing nucleotide substitutions that 

targeted the highly conserved ‘G’ (at position 5) and ‘A’ (at position 6) in LRE2 and LRE3, 

and the highly conserved ‘T’ (at position 7) and ‘C’ (at position 8) in LRE1 (Fig. 4B). 

Consistent with previous studies we found that the activity of the SPBC1348.06c-lacZ 
reporter was ~50-fold lower in zinc-replete cells, in a manner that was dependent upon Loz1 

(Fig. 4C strains 1 and 9). Nucleotide substitutions that targeted individual LREs reduced 

Loz1-mediated repression by ~10–20%, with substitutions targeting LRE2 having the most 

significant effect (Fig. 4C strains 3–5). When the mutations disrupting LRE1 and LRE2 

were combined, there was no further reduction (Fig. 4C strain 6). However, when nucleotide 

substitutions were introduced that targeted all three LREs, Loz1-mediated gene repression 

was eliminated (Fig. 4C strain 7). Loz1-mediated gene repression was also eliminated when 

nucleotide substitutions were introduced that targeting the G and A in all three LREs (data 

not shown). The results are consistent with at least one LRE being required for Loz1-

mediated gene repression.
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To gain additional evidence that LREs were required for Loz1 regulation we tested whether 

this element was required for the Loz1-mediated repression of a gcd1-lacZ reporter. The 

gcd1 promoter contains two putative LREs at positions −303 to −293 and −384 to −374, 

relative to the transcriptional start site (Fig. 5A). To assess the role of the individual 

elements we generated long and short gcd1-lacZ reporter constructs containing one or both 

of the elements. Growth in high zinc led to a 12-fold reduction in reporter activity of the 

longer gcd1-lacZ reporter, in a manner that was dependent upon Loz1 (Fig. 5B strains 2 and 

7). The shorter reporter was also regulated by zinc and Loz1. However, this reporter had 

higher levels of activity in low zinc, and growth in high zinc only resulted in an ~2-fold 

decrease in β-galactosidase activity (Fig. 5B, strain 3). To test whether LRE1 was required 

for the 2-fold decrease in the activity of the shorter reporter we substituted the highly 

conserved ‘C’ at position 8 in the LRE to a ‘G’. While this mutation was expected to 

interfere with Loz1-mediated gene repression, it did not significantly alter the level of gene 

repression observed in high zinc conditions (Fig. 5B strain 4).

Potential explanations of the above results are that Loz1 binds to additional sites in the gcd1 
promoter, or that Loz1 regulates the expression of other proteins or RNAs that affect gcd1 
expression. To further probe Loz1 DNA binding specificity, we used electrophoretic 

mobility shift analysis (EMSA) to screen for nucleotide substitutions that affected Loz1 

DNA binding in vitro. The recombinant Loz1 protein used for these analyses consisted of 

the C-terminal amino acid residues 426–522 containing two C2H2-type zinc fingers and an 

adjacent accessory domain. A DNA-protein complex was detected when purified 

Loz1426−522 was incubated with 32P-labeled double-stranded oligomers containing the 

‘wild-type’ motif 5’-CGNMGATCNTY-3 (Fig. S2). The formation of this complex was also 

inhibited by incubation with competitor unlabeled ‘wild-type’ oligomers indicating that 

Loz1 binds to this sequence in a site-specific manner. When EMSAs were performed using 

related oligomers containing systematic nucleotide substitutions to the core LRE sequence, 

no DNA-protein complexes were detected when nucleotide substitutions were introduced 

that altered the ‘G’ at position 2, and the ‘A’, ‘T’, or ‘C’, at positions 5 to 7 (Fig. S3 and S4). 

Substitutions of the G at position 5 with a C and T also led to the loss of complex formation, 

whereas substitutions altering nucleotides at positions 3 or 4 in the LRE had no effect on 

DNA-complex formation (Fig. S3 and S4).

The above screen suggested that the G at position 2 in the LRE and the core ATC 

nucleotides at positions 6–8 were critical for site-specific Loz1 DNA binding activity. They 

also suggested that a G or A can be present at position 5. When we searched the shorter gcd1 
promoter region for motifs with a core sequence of 5’-NGNN(G/A)ATCNNN-3’, we found 

one additional motif on the reverse strand at position −276 to −286 (5’-

TGCAAATCTTC-3’), which we designated gcd1 LRE3 (Fig. 5A LRE3). When mutations 

were introduced targeting key nucleotides in gcd1 LRE3, mutation of this element led to a 

reduction in Loz1-mediated gene repression in high zinc, whereas disruption of both LRE2 

and LRE3 led to a further loss of Loz1-mediated gene expression (Fig. 5B strains 5 and 6). 

These results are consistent with Loz1 binding to derivatives of the LREs with an A at 

position 5. They also suggest that Loz1-mediated gene repression is relatively complex, and 

that multiple factors including the LRE sequence, the total number of LREs within a 
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promoter, and the position of the LREs, may affect the levels of gene repression observed in 

high zinc conditions.

The LRE is sufficient for Loz1-mediated gene repression

To determine if the LRE was sufficient for Loz1-dependent gene repression, we developed 

constructs to express a minimal CYC1-lacZ (MinCYC1-lacZ) reporter in S. pombe (Fig. 6A). 

This reporter contains the well characterized minimal region of the CYC1 promoter from S. 
cerevisiae, which includes the canonical TATA box, but not any UASs (Bachhawat et al., 
1995, Zhao et al., 1998). As this minimal system could potentially contain binding sites for 

transcription factors from S. pombe, we first integrated the MinCYC1-lacZ reporter into the 

leu1 locus of wild-type and loz1Δ cells and measured β-Galactosidase activity following 

growth in low and high zinc. As shown in Fig. 6B, very low levels of β-Galactosidase 

activity were observed in cells expressing the MinCYC1-lacZ reporter, suggesting that this 

minimal promoter region does not contain sequences that function as UASs in S. pombe.

We next introduced a thiamine-regulatory sequence (TRS) 241 bp upstream of the 

translational ATG (Fig. 6A). The TRS is a previously mapped cis-acting element that is 

required for strong activation of the nmt1 promoter (Zurlinden & Schweingruber, 1997). 

Consistent with this sequence containing a binding site for a transcriptional activator, the 

insertion of the TRS led to an ~600-fold increase in β-Galactosidase activity (Fig. 6B). This 

increase in activity was also independent of Loz1 and was not affected by cellular zinc 

status. When an LRE was inserted into a similar site, it was not able to confer any increase 

in activity.

To test whether the LRE was sufficient for Loz1-mediated gene repression, we inserted 1 or 

2 copies of the overlapping LRE1 and LRE2 from the SPBC1348.06c promoter, upstream of 

the TRS (Fig. 6C). We introduced multiple copies of the LRE for these studies because it is 

unclear how Loz1 facilitates gene repression, and whether other factors such as distance of 

the LRE from UAS’s and other promoter elements are important for Loz1-mediated 

repression. In this minimal system, the insertion of two LREs upstream of the TRS resulted 

in ~1.5-fold decrease in β-galactosidase activity in zinc-replete cells, whereas the 

introduction of 4 LREs led to a ~5-fold decrease (Fig. 6D). In both cases the zinc-dependent 

decrease in β-galactosidase activity was dependent upon Loz1. These results are consistent 

with the LRE being sufficient for Loz1-mediated gene repression.

As the LRE sequence was required and sufficient for Loz1-mediated gene repression we 

searched the promoters of the putative Loz1 target genes for consensus and non-consensus 

LREs. 25 of the 27 target genes contained at least one NGNNGATCNNN motif within the 

ChIP-seq. peak or within 100 bp of the peak (Table 1). Although two ChIP-seq peaks did not 

contain this motif, multiple NGNNAATCNNN sequences were present suggesting that Loz1 

may bind to non-consensus elements at these promoters. As these genes are Loz1 ChIP-seq 

targets and are repressed in high zinc in a manner that is dependent upon Loz1, we propose 

that these 27 genes form the Loz1 regulon in fission yeast. As discussed below, these genes 

encode proteins that have known roles in zinc homeostasis, small molecule transport, 

covalent protein folding, and carbohydrate metabolism.
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Discussion

In this study we examined the role of the Loz1 transcription factor in controlling gene 

expression in response to cellular zinc status. We have found that at the majority of 

promoters Loz1 binds to LREs in high zinc conditions and that the recruitment of Loz1 to 

these elements is associated with lower levels of gene expression. Based on these 

observations we propose that the primary function of Loz1 is gene repression when zinc is in 

excess.

When expressed from the constitutive pgk1ΔTATA promoter, ~ 75% of the genes identified as 

Loz1 target genes had a Loz1-binding peak that was enriched in high zinc growth conditions 

(Table 1 and S3). As Loz1 is localized to the nucleus under all growth conditions (Corkins et 
al., 2013), these results are consistent with Loz1 DNA binding activity being regulated by 

zinc. How might zinc affect Loz1 DNA binding function? Functional dissection of the Loz1 

protein has shown that the smallest region that is able to confer zinc-dependent gene 

repression maps to its last 96 amino acids (Ehrensberger et al., 2014). This same small 

region contains two C2H2 zinc finger domains and an adjacent accessory domain, both of 

which are necessary for Loz1 DNA binding activity in vitro and Loz1-mediated gene 

repression in vivo (Ehrensberger et al., 2014). As the minimal zinc responsive domain of 

Loz1 contains two C2H2 zinc finger domains, one potential explanation for the zinc-

responsiveness of the Loz1 protein is that one or both of these domains bind zinc with a low 

affinity. In this model the low affinity zinc finger domain(s) would be in a largely 

unstructured apo-form in low zinc conditions preventing Loz1 from binding to DNA. On the 

other hand, when there were adequate levels of intracellular zinc, the zinc finger domain(s) 

would bind zinc and fold into a conformer that permits DNA binding and gene repression.

Our current results also do not exclude models where both of the zinc finger domains are 

occupied with zinc under all growth conditions, and therefore an alternative regulatory event 

controls Loz1 DNA binding activity. For example, in some transcription factors post-

translational modifications of key residues in zinc finger domains or their linker regions can 

interfere with DNA binding (Dovat et al., 2002, Kluska et al., 2018). Other viable models 

therefore include the possibility that Loz1 is post-translationally modified or interacts with 

other regulatory factors in a manner that is dependent upon cellular zinc status, and that this 

regulatory event affects DNA binding function. Studies of other eukaryotic zinc-responsive 

transcription factors including MTF-1 and Zap1 have shown that they are able to sense 

changes in intracellular zinc levels using regulatory zinc finger domains (Bird et al., 2003, 

Chen et al., 1999, Gunther et al., 2012, Wang et al., 2006). We therefore favor a model 

where Loz1 is the direct sensor of zinc in yeast. Our ongoing experiments are currently 

testing whether one or both of the Loz1 zinc finger domains bind zinc with a reduced 

affinity.

By examining the activity of the pgk1ΔTATA-driven Loz1GFP we found that the over-

expression of Loz1GFP results in higher levels of gene repression under low zinc conditions. 

If Loz1 DNA binding activity is dependent upon zinc, why would overexpression of Loz1 in 

a zinc-limited cell lead to increased gene repression? One possible explanation is that the 

levels of Loz1 within cells are not sufficient to occupy all of the Loz1 binding sites within 
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the genome. In this scenario, an increase in the total levels of Loz1 could result in a higher 

number of active Loz1 proteins under a given condition, which in turn may lead to an 

increased occupancy of LREs and a higher level of gene repression. An alternative 

possibility is that a yet to be identified factor(s) maintains Loz1 in its inactive state in low 

zinc. While we have not yet identified any additional factors required for Loz1-mediated 

gene repression, there are precedents for this type of regulation. For example, in S. 
cerevisiae the inactivation of the transcription factor Hap1 in low heme is dependent upon 

the recruitment of Ssa-type Hsp70 molecular chaperones that mask the Hap1 DNA binding 

and transactivation domains (Hon et al., 2001). These interactions are critical to maintain 

Hap1 in an inactive state as reduced expression of Hsp70 chaperones or overexpression of 

Hap1 both lead to the derepression of Hap1 target genes. In fission yeast a related model 

could exist where additional proteins maintain Loz1 in its inactive state in low zinc, and 

over-expression of Loz1 overrides this mechanism.

While the preferentially recruitment of Loz1 to its target gene promoters in high zinc 

provides a simple explanation of how gene repression occurs in a manner that is dependent 

upon zinc, approximately 25% of the genes that were identified as Loz1 targets had a Loz1-

binding peak that was enriched in high and low zinc conditions (Fig. 2C and Table S3). 

Given that the Loz1GFP fusion protein used for the ChIP-seq analysis was over-expressed, 

we currently cannot eliminate the possibility that the ability of Loz1 to bind to these 

promoters in a zinc-independent manner is an artefact of the higher levels of Loz1 in these 

cells. However, studies of different zinc-responsive transcription factors have found that 

these proteins often contain multiple zinc-responsive domains that are independently 

regulated by zinc (Frey & Eide, 2011, Wilson & Bird, 2016, Gunther et al., 2012). It is 

therefore possible that Loz1-mediated gene repression at some promoters may be more 

complex, with Loz1 being bound under all conditions and an alternative regulatory 

mechanism triggering its inactivation in high zinc.

By analyzing ChIP-seq and RNA-Seq targets we identified 27 genes that are repressed in 

high zinc in a Loz1-dependent manner. Of these genes, eight have homologs or functional 

homologs in S. cerevisiae that are regulated by Zap1 (zrt1, adh4, adh1AS, tpx1, pof1, 

SPAC977.05c, SPBC1348.06c, SPBPB2B2.15). Given the considerable evolutionary 

distance between budding and fission yeast, the conserved regulation of these genes in both 

systems suggests that this subset of genes have particularly important roles in zinc 

homeostasis or for survival when zinc levels are low. Consistent with this hypothesis, Zrt1 is 

critical for the survival of S. pombe and S. cerevisiae under zinc-deficient conditions (Zhao 

& Eide, 1996, Boch et al., 2008). The ADH4 and TSA1 genes are also required for growth 

in low zinc in S. cerevisiae (North et al., 2012).

The identification of tpx1 (TSA1 in S. cerevisiae) and pof1 (MET30 in S. cerevisiae) as 

Loz1 target genes highlight two new conserved zinc-regulated pathways. In S. cerevisiae the 

peroxiredoxin Tsa1 is critical for survival in low zinc because it has a molecular holdase 

function which prevents aggregation of unfolded and misfolded proteins (MacDiarmid et al., 
2013, Wu et al., 2007). While it is not yet known if the molecular chaperone function of 

Tpx1 is critical for survival of fission yeast in low zinc, the conserved regulation of 

peroxiredoxin gene expression by zinc suggests that increased levels of unfolded and 
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misfolded proteins may be a widespread problem in low zinc conditions. Based on studies of 

Met30 in S. cerevisiae the regulation of pof1 by Loz1 could be a mechanism to help reduce 

oxidative stress under conditions of zinc deficiency. In S. cerevisiae, Met30 facilitates the 

degradation of Met4, a transcription factor required for the expression of sulfate assimilation 

genes (Wu et al., 2009). Since sulfate assimilation requires high levels of NADPH, an 

important cofactor for oxidative stress defense, the net result of increased expression of 

MET30 in low zinc is reduced sulfate assimilation and conservation of NADPH. In fission 

yeast Pof1 controls the degradation of Zip1, a transcription factor required for the expression 

of sulfate assimilation genes (Harrison et al., 2005, Guo et al., 2012). The Loz1-dependent 

regulation of pof1 expression could therefore be a related mechanism to conserve NADPH. 

It is also noteworthy that gcd1 is a Loz1 target and that derepression of gcd1 expression in 

low zinc results in glucose being directed into the pentose phosphate pathway via the 

gluconate shunt (Corkins et al., 2017). As the pentose phosphate pathway is a major route 

for the regeneration of NADPH, S. pombe may rely on multiple mechanisms to combat 

higher levels of oxidative stress in low zinc.

In addition to identifying conserved regulatory pathways Loz1 controls the expression of 

many unique genes. As examples, Loz1 target genes include puf5, which encodes a member 

of the pumilio family of RNA binding proteins, and pyp2 which encodes a putative tyrosine 

phosphatase. As 102 additional transcripts were expressed at higher levels in loz1Δ cells that 

were not Loz1 ChIP-seq targets, it is tempting to speculate that alterations in the expression 

of these Loz1 target genes may affect the expression of other genes by influencing mRNA 

decay or by affecting the activity of other transcription factors. Another new Loz1 target 

gene is dak2, which encodes dihydroxyacetone kinase, an enzyme that is involved in the 

breakdown of glycerol via a dihydroxyacetone phosphate (DHAP) intermediate. In the 

DHAP pathway glycerol is oxidized to dihydroxyacetone, which is then phosphorylated to 

DHAP by Dak1 or Dak2 (Matsuzawa et al., 2010). Why would dak2 expression be regulated 

by Loz1? One potential explanation is that in low zinc there is a significant reduction in 

levels of the zinc-requiring enzyme aldolase, which catalyzes the reversible cleavage of 

fructose 1,6, bisphosphate into DHAP and Glyceraldehyde-3-phosphate (G3P) (Wang et al., 
2018). As increased Dak2 activity would increase the generation of DHAP, increased 

expression of dak2 in low zinc could be a mechanism to compensate for reduced aldolase 

activity under this condition. While additional experiments are needed to test this 

hypothesis, they highlight that studies with other Loz1 target genes will likely provide 

additional insight into the molecular consequences of zinc deficiency.

Experimental Procedures

Strains and growth conditions

The yeast strains used in this study are shown in Table S4. All strains were grown in YES 

medium supplemented with 3% glucose and 225 mg/l leucine, 225 mg/l uracil and 338 mg/l 

adenine, or in Zinc-Limited Edinburgh Minimal Medium (ZL-EMM) which is a derivative 

of EMM which does not contain zinc (Choi et al., 2018). Prior to inoculation in ZL-EMM, 

cells were pre-grown to exponential phase in Yeast Extract with supplements (YES) medium 

and washed twice with ZL-EMM with no added zinc.
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Plasmid construction

To generate pgk1ΔTATA-Loz1GFP a cloning strategy was used that first involved generating 

Pgk1-Loz1-GFP, which contains a fusion of the loz1 and GFP open reading frames under the 

control of 840 bp of the pgk1 promoter and its 5’UTR. To create Pgk1-Loz1-GFP, the pgk1 
promoter and 5’UTR were amplified by PCR using primers containing Kpn1/EcoRI sites. 

The Kpn1/EcoRI digested PCR product was then inserted into similar sites of the vector JK-

GFP (Corkins et al., 2013) to generate JK-pgk1-GFP. To generate an in-frame fusion of 

Loz1 to GFP, the loz1 open reading frame without its stop codon was released from the 

vector pSK-loz1 (Corkins et al., 2013) by digestion with EcoRI and BamHI and subcloned 

into similar sites in the vector JK-pgk1-GFP to generate pgk1-Loz1GFP. To generate 

pgk1ΔTATA-Loz1GFP, QuikChange mutagenesis (Agilent) was used to delete the first four 

nucleotides of the canonical TATA box found at position −85 to −82 in the pgk1 promoter 

relative to the translational ATG. The construction of the zrt1-lacZ reporter was described 

previously (Ehrensberger et al., 2014). To create the SPBC1348.06c-lacZ reporter a DNA 

fragment encompassing positions +3 to −1205 bp of the SPBC1348.06c promoter and ORF 

was amplified using PCR. This fragment was inserted into the EagI and BamHI sites of the 

vector JK-lacZ (Ehrensberger et al., 2013). Primers for these reactions were designed so that 

the translational ATG of SPBC1348.06c was inserted in frame with the lacZ coding region. 

Derivatives of this vector containing nucleotide substitutions within LREs were generated by 

cloning overlapping PCR products containing the following nucleotide substitutions shown 

in bold: LRE1 (5’-CGTAGAGGATG-3’); LRE2 (5’-CGACCCTCATA-3’); and LRE3 (5’-

GGAACCTCTAC-3’). Constructs containing substitutions in multiple LREs, were 

generated using the vector templates that already contained substitutions in alternative 

LREs. The construction of the reporter gcd1-lacZ, which contains 1452 bp of the gcd1 
promoter and 5’UTR was described previously (Corkins et al., 2017). The shorter gcd1 
reporter was generated in a similar manner and contains 1108 bp of the gcd1 promoter and 

5’UTR fused to the lacZ open reading frame. The minimal CYC1 promoter was generated 

by using PCR to amplify a 700 bp minimal CYC1 promoter fragment from the vector 

pNB404 (Bachhawat et al., 1995). Primers were designed to introduce this fragment into the 

SacII/BamHI sites of the vector JK-lacZ. Cloning of oligonucleotide TRS insert was 

performed as described by (Zhao et al., 1998). Briefly, complementary oligonucleotides 

containing suitable overhangs to clone into the SalI restriction sites were phosphorylated 

using T4 polynucleotide kinase, annealed in the presence of 0.32 × SSC, and were subcloned 

into SalI digested JK-lacZ. Combinations of LREs from the SPBC1348.06c promoter were 

introduced upstream of the TRS by two-step overlapping PCR (Ho et al., 1989). All PCR 

products generated by overlapping PCR were inserted into the SacII/BamHI of JK-lacZ. All 

constructs were confirmed by sequencing.

ChIP Analysis

For ChIP analysis 75 ml of the strain loz1Δ pgk1ΔTATA-Loz1GFP were grown to an OD600 

of ~6.0 in ZL-EMM supplemented with or without 100 μM Zn2+ and were treated with 1% 

formaldehyde for 10 min at room temperature. Crosslinking was quenched by the addition 

of 250 mM glycine. Cells were then washed, resuspended in the lysis buffer (50mM Hepes-

KOH pH 7.5, 140mM NaCl, 1mM EDTA, 1% (v/v) Triton X-100, 0.1% (w/v) sodium 
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deoxycholate, 0.4mM DTT, and protease inhibitors) and lysed by vortexing for 7 × 1 min in 

the presence of zirconium beads. To obtain cross-linked chromatin, cell lysates were 

centrifuged at 14,000 rpm for 5 min and the supernatant discarded. After centrifugation, 

cross-linked chromatin was resuspended in lysis buffer, DNA sheared to an average length 

of 500 bp by sonication, and cell debris removed by centrifugation at 14000 rpm for 5 min. 

For immunoprecipitations, chromatin solutions were incubated with anti-GFP antibodies 

(Abcam Ab290) and protein A magnetic beads (Invitrogen™ Dynabeads™ Protein A) 

overnight at 4°C. After Immuno-complexes were harvested the crosslinks were reversed by 

heating at 65°C for 5–7 hrs and DNA purified by Qiagen PCR purification kit. The percent 

input method was used to calculate the signal of enrichment as described by (Chung et al., 
2014).

ChIP-seq Analysis

ChIP seq samples were prepared as described above with the exception that the sonication 

step was performed using a Covaris Evolution ultrasonicator. The ChIP-seq Methodology 

performed by the Institute for Genomic Medicine at Nationwide Children’s Hospital. ChIP-

seq libraries were constructed from 5 ng of fragmented ChIP DNA using NEB Ultra II FS 

library prep kit (New England Biolabs, Ipswhich MA). Briefly, DNA fragment ends were 5´ 

Phosphorylated, dA-tailed, and ligated with a unique, dual UMI indexed adaptor (Integrated 

DNA Technologies, Iowa). Following purification, using a magnetic-bead based approach 

(AMPure XP System), adaptor-ligated DNA was amplified by 8–9 PCR cycles. Quality of 

libraries were determined via Agilent 2200 TapeStation using High Sensitivity D1000 

reagents, and quantified using Kappa SYBR®Fast qPCR kit (KAPA Biosystems, Inc, MA). 

Approximately, 4 million paired-end 150 bp sequence reads were generated per sample 

using Illumina MiniSeq platform. Sequencing reads were analyzed using the HOMER suite 

(Heinz et al., 2010). Tag directories were created using HOMER makeTagDirectory with -

fragLength parameter manually specified for each sample. The makeUCSCfile program was 

used to generate bed graph files used for visualization in the Integrative Genomics Viewer 

(Robinson et al., 2011). The findPeaks program with the -style option set to ‘factor’ was 

used for peak-calling and findMotifsGenome.pl was used to identify motifs enriched in the 

ChIP-seq peaks. Differentially binding analysis for ChIP-seq signals between low and high 

zinc replicates was conducted using the Diffbind package, which uses the TMM 

normalization method from the edgeR package to identify differential peaks (Afgan et al., 
2016, Ross-Innes et al., 2012, Stark & Brown, 2011).

Motif discovery and Enrichment in Loz1-regulated genes

For analysis of conserved promoter elements, the MEME motif finder was accessed at 

meme-suite.org and run using default parameters (Bailey et al., 2009). Weeder and 

CONSENSUS were run at default parameter settings using their respective standalone 

applications for Linux (Pavesi et al., 2004, Hertz & Stormo, 1999).

Protein extraction and Immunoblot analysis

Crude protein extracts were prepared using a Trichloroacetic Acid (TCA) precipitation as 

described by (Peter et al., 1993). Briefly 5 ml of cells were harvested by centrifugation for 2 

min at 3500 rpm. Cell pellets were resuspended in 0.5 ml of ice-cold buffer A (20 mM Tris 
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(pH 8.0), 50 mM NH4OAc, 0.5 mM EDTA, 0.2 mM phenylmethylsulfonyl fluoride) and 

were immediately mixed with 0.5 ml of ice cold 20% trichloroacetic Acid. Cells were then 

vortexed in the presence of glass beads for 2 × 0.5 min, with 2 min cooling on ice in-

between. The supernatant was the placed into a new tube, proteins pelleted by centrifugation 

for 10 min at 12,000 rpm, and the pellet resuspended in trichloroacetic acid-sample buffer 

(3% SDS, 100 mM Tris base pH 11, 3 mM DTT). Extracts were then boiled for 10 min and 

insoluble cell debris pelleted by centrifugation for 2 min at 12,000 rpm. Proteins were 

separated by SDS-PAGE polyacrylamide gene electrophoresis followed by immunoblotting 

to a nitrocellulose membrane. Immunoblots were probed with anti-GFP (G1544, Sigma) and 

anti-Act1 (ab3280–500) primary antibodies and IRDye800CW-conjugated anti-mouse IgG 

(LI-COR) and IRDye680-conjugated anti-rabbit IgG (LI-COR) secondary antibodies. An 

Odyssey infrared image system (LI-COR) was used for visualization and analysis of signal 

intensities.

β-galactosidase assays

β-galactosidase assays were performed as described by (Guarente, 1983). Briefly in these 

assays 1 ml of cells are resuspended in lacZ buffer (0.06 M Na2HPO4.7H2O, 0.04M 

NaH2PO4.H2O, 0.01 M KCl, and 0.001 M MgSO4) and lysed by vortexing for 10 s in the 

presence of 0.05 ml of CHCl3 and 0.05 ml of 0.1% SDS. β-galactosidase activity was 

determined by monitoring the hydrolysis of the substrate o-Nitrophenyl-β-D-galactosidase 

(ONPG), and was calculated using the following equation: (ΔA 420 × 1000)/(min × ml of 

culture × culture absorbance at 600 nm). Error bars represent the standard deviation of 

values obtained from 3 independent repeats.

RNA-blot hybridizations and RNA-seq analysis

For RNA blot analyses total RNA was purified from the indicated cells using the hot acidic 

phenol method (Collart & Oliviero, 1993). Depending on transcript abundance, between 5–

20 μg of denatured total RNA was separated on formaldehyde gels and transferred to nylon 

membrane according to the method described by Sambrook et al., (Sambrook & Russell, 

2001). Following transfer RNA blots were incubated with single stranded 32P-labeled RNA 

probes that were generated from purified PCR products using the Ambion™ MAXIscript™ 

T7 In Vitro Transcription kit according to manufacturer’s instructions. Signal intensities 

representing transcript abundance were visualized using GE Typhoon FLA 9500. For RNA 

seq analysis wild-type and loz1 deletion strains were grown to mid log phase in zinc-limited 

EMM supplemented with 100 μM Zn. Total RNA was isolated using the RiboPureTM RNA 

Purification Kit for yeast (ThermoFisher Scientific) according to the manufacturer’s 

instructions and subsequent library preparation and next generation sequencing performed 

by Beckman Coulter Genomics. Reads were aligned to the S. pombe reference genome 

using Hisat2 (Kim et al., 2015), and transcripts assembled and FPKM (fragments per kb for 

a million reads) values determined using Cufflinks (Trapnell et al., 2012). Following 

normalization, differential expression of transcripts was assessed with cuffdiff of the 

cufflinks suite, and significant genes identified based on a false discovery rate of 0.05 

(Trapnell et al., 2012, Trapnell et al., 2013).
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Data availability

The RNA‐Seq and ChIP‐Seq data generated in this study were submitted to the Gene 

Expression Omnibus 347. The accession number for both data sets (SuperSeries record) is 

GSE130846. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130846

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Generation of a Loz1GFP expression vector for ChIP-seq analysis. A) Immunoblot analysis 

of crude protein extracts isolated from wild-type cells and loz1Δ cells expressing 

pgk1ΔTATA-Loz1GFP or loz1p-Loz1GFP following growth overnight in ZL-EMM (-Zn) or 

in ZL-EMM + 100 μM Zn2+ (+Zn). Blots were probed with anti-GFP and anti-Act1 (Actin), 

which served as a loading control. The positions of the molecular weight markers (in kDa) 

are indicated on the left. Immunoblots were performed in triplicate and a representative blot 

is shown. The numbers below the anti-GFP panel indicate the mean increase in pgk1ΔTATA-

Loz1GFP relative to the loz1p-Loz1GFP with +/− standard deviations. N=3
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(B) β-galactosidase activity was assayed in loz1Δ cells co-expressing a zrt1-lacZ reporter 

and the indicated plasmids following growth overnight in ZL-EMM supplemented with 0, 

0.5, 1, 10, or 100 μM Zn2+. Data represents the mean values with error bars representing 

standard deviations. N=3

(C) ChIP-qPCR experiments to validate that the pgk1ΔTATA-Loz1GFP protein could be used 

for ChIP analysis. loz1Δ cells expressing pgk1ΔTATA-Loz1GFP were grown overnight in ZL-

EMM with 0 (-Zn) or 100 μM Zn2+(+Zn), and ChIP-qPCR carried out with primers flanking 

the zrt1 and adh4 promoters. The fold enrichment in the immunoprecipitations relative to 

input DNA was calculated as described in the materials and methods. Primers specific to the 

psi2 promoter were used as a negative control. The numbers are the average fold enrichment 

with error bars showing standard deviations. N=3
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Figure 2. 
Identification of Loz1 binding sites using ChIP-seq (A) ChIP-seq was performed as 

described in the materials and methods. The input-normalized fold enrichment profiles for 

peaks enriched in high zinc (orange dots) and low zinc (blue dots) were plotted against 

chromosome position. Positions of peaks in the promoters of characterized Loz1 target 

genes adh4, zrt1, and adh1AS are indicated.

(B) ChIP-seq data was visualized with the Integrative Genomics Viewer Software. Snapshots 

of the peaks identified in the adh4, zrt1, and adh1AS promoters in low and high zinc are 

shown.
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(C) Volcano plot of the confidence scores of Loz1 binding sites plotted against the zinc-

dependent fold-change in normalized read counts. Loz1 binding sites where there is a 

greater than 2-fold increase in binding under one condition (low zinc or high zinc) as 

compared to the other, have been colored pink.
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Figure 3. 
Identification of genes that are repressed by Loz1 in high zinc conditions A) Venn diagram 

representing the overlap of genes expressed at a higher level in loz1Δ cells grown in high 

zinc, and protein coding genes that contain a Loz1 ChIP-seq peak within 1500 bp of the 

transcriptional start site following growth in zinc-replete conditions. When ChIP-seq peaks 

were located in the promoters of two divergently transcribed genes (49 of 98 peaks), both 

genes were included.

B) To validate results from the RNA-seq analysis the indicated strains were grown overnight 

in ZL-EMM supplemented with 0, 1,10,100 μM Zn. Total RNA was prepared from the 

indicated strains and subjected to RNA blot hybridization with the indicated probes. A 
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representative blot is shown on the left. Ribosomal RNAs were used as the loading control, 

and zrt1 representing a previously characterized Loz1 target gene. Due to the differences in 

dak2 transcript abundance in wild-type and loz1Δ cells, short and long exposures are shown.

C) Quantification of RNA blot analysis. Hybridization signals obtained with the indicated 

P32 labelled probes were detected by phosphorimaging and were quantitated using Image J. 

The values were normalized to the 18 S rRNA and represent the average value of 3–4 

independent replicates. Error bars represent +/− standard deviations and p values were 

determined using a student’s t-test. ***p<0.001, **p<0.01, *p<0.05, ns not significant.
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Figure 4. 
The Loz1 response element is required for Loz1-mediated gene repression. A) The program 

MEME was used to identify putative cis-acting DNA elements that were located in the 

promoters of Loz1 target genes. The shown motif (named the Loz1 response element) was 

enriched in ChIP-seq peaks of genes that were repressed by Loz1 in high zinc.

B) A schematic diagram of the SPBC1348.06c-lacZ reporter highlighting the positions and 

sequences of putative LREs. The numbers indicate the distance of the first base of the motif 

to the putative ATG initiation codon. Nucleotide substitutions that were introduced to disrupt 

LRE function are shown in bold.

C) Wild-type or loz1Δ cells expressing the indicated SPBC1348.06c-lacZ reporter genes 

were grown overnight in ZL-EMM supplemented with 0 or 100 μM zinc before cells were 

harvested and assayed for β-galactosidase activity. The relative positions of the putative 

LREs in the reporters are indicated by green boxes. The positions of mutated LREs are 
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shown by green boxes with red crosses. Data represents the mean values with error bars 

representing standard deviations. N=3
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Figure 5. 
Loz1-dependent repression of the gcd1 promoter is dependent upon multiple LREs A) A 

schematic diagram of the gcd1-lacZ reporter highlighting the positions and sequences of 

putative LREs (green and blue boxes) and the position of the gcd1 5’UTR (purple boxes and 

line). The numbers indicate the distance of the first base of each motif relative to the putative 

transcriptional start site for gcd1. Nucleotide substitutions that were introduced to disrupt 

LRE function are shown in bold.

B) Wild-type or loz1Δ cells expressing the indicated gcd1-lacZ reporter genes were grown 

overnight in ZL-EMM supplemented with 0 or 100 μM zinc before cells were harvested and 

assayed for β-galactosidase activity. The relative positions of the putative LREs in the 

reporters are indicated by green and blue boxes. The positions of mutated LREs are shown 

by green and blue boxes with red crosses. Numbers represent the average value with error 

bars representing standard deviations. N=3
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Figure 6. 
The LRE is sufficient for Loz1-mediated gene repression.A) A schematic diagram of the 
MinCYC1-lacZ reporter containing a thiamine responsive element (TRS) or LRE. The 

numbers indicate the distance of the first base of the motif to the putative ATG initiation 

codon.

B) Wild-type or loz1Δ cells expressing the indicated MinCYC1-lacZ reporter gene were 

grown overnight in ZL-EMM supplemented with 0 or 100 μM zinc before cells were 

harvested and assayed for β-galactosidase activity. Numbers represent the average value 

with error bars representing standard deviations. N=3

C) A schematic diagram of the MinCYC1-lacZ reporter containing the TRS and 2 copies of 

LRE1 and LRE2 from the SPBC1348.06c-lacZ reporter. The numbers indicate the distance 

of the first base of the motif to the putative ATG initiation codon.
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D) Wild-type or loz1Δ cells expressing the indicated MinCYC1-lacZ reporter gene were 

grown overnight in ZL-EMM supplemented with 0 or 100 μM zinc before cells were 

harvested and assayed for β-galactosidase activity. Numbers represent the average value 

with error bars representing standard deviations. N=3.
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Table 1.
Loz1 target genes that were identified by RNA-seq and ChIP-seq.

Gene Common 
Name Function

Ï RNA-seq 
Δloz1/WT
+Zn
Fold 
increase 
Log2 
(average)

Putative LRE 
Sequence Position

† Loz1-Dependent 

regulation
‡

Transmembrane transport

SPAC977.17 MIP water channel 7.40 TGCAGATCCCG −970

TGCAGATCCAA −993

SPBC16D10.06 zrt1 Plasma membrane ZIP 
zinc transmembrane 
transporter

5.16 AGCAGATCCTT −735 (Corkins et al., 
2013, 

Ehrensberger et 
al., 2014)

TGACGATCGAA −1515

SPCC548.07c$ ght1 Plasma membrane high
−affinity glucose:proton 
symporter

4.70 GGAAAATCCAA −1766

TGGCAATCCCC −1808

TGCAAATCGCC −1817

SPCC1529.01$ Transmembrane 
transporter

3.48 GGAAAATCCAA −1281

TGGCAATCCCC −1239

TGCAAATCGCC −1230

SPCC569.05c Spermidine family 
transporter

2.84 CGTAGATCATG −639 This study

SPBC1683.08 ght4 Plasma membrane 
hexose:proton symporter

1.92 GGACGATCTCC −959

CGGAGATCGTC −980

TGAAGATCGAT −1056

SPAC4H3.01 DNAJ domain protein 
Caj1/Djp1 type

1.39 CGTCGATCATT −1321

TGCCGATCACT −1339

Carbohydrate metabolic processes

SPAC977.16c dak2 Dihydroxyacetone kinase 8.61 TGCAGATCCAA +530 This study

CGGGATCTGCA +497

SPCC13B11.02c adh1AS Adh1 antisense transcript 7.99 CGTCGATCATT −295 (Corkins et al., 
2013)

CGGCGATCCAT −106

TGCCGATCAGA −163

AGAAGATCAAA −185

TGATGATCAAA −207

SPAC5H10.06c adh4 Alcohol dehydrogenase 6.80 CGACGATCACG −917 (Corkins et al., 
2013, 

Ehrensberger et 
al., 2014)

AGAAGATCTTG −953

AGAAGATCCAC −954

CGTGGATCTTC −965

TGTGGATCACT −981

SPCC794.01c gcd1 Glucose dehydrogenase 6.30 GGATGATCGAA −816 (Corkins et al., 
2017)

SPAC4F8.07c hxk2 Hexokinase 2 1.08 AGTCGATCGAC −1870
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Gene Common 
Name Function

Ï RNA-seq 
Δloz1/WT
+Zn
Fold 
increase 
Log2 
(average)

Putative LRE 
Sequence Position

† Loz1-Dependent 

regulation
‡

CGTCGATCGAC −1859

Gene Regulation and signaling

SPAC25B8.19C loz1 Zinc−responsive 
transcription factor

3.01 CGCAGATCATT −1397 (Corkins et al., 
2013)

CGTCGATCATA −1386

CGCCGATCACC −1075

SPAC57A10.05c pof1 F−box/WD repeat protein 1.39 CGTAGATCATT −750

TGCAGATCAGT −855

SPAC19D5.01¶ pyp2 Tyrosine phosphatase 1.46 CGAGGATCAGA −882

SPAC4G8.03c puf5 Pumilio family RNA
−binding protein mRNA 
metabolic process

1.38 AGTCGATCTTG −2728

Unknown/pombe specific

SPBC1348.06c§

(SPBPB2B2.15
SPAC977.05c)

Velum formation protein 11.07 CGTAGATCATG −130 (Corkins et al., 
2013)

CGACGATCATG −147

GGAAGATCTAC −380

SPAC57A10.06 mug15 4.95 CGTAGATCATT −954

TGCAGATCAGT −859

SPBC12C2.14c dubious 3.76 CGTCGATCTTT −692

CGCAGATCTTT +75

CGTCGATCCTG +188

CGTCGATCTTG +158

TGTCGATCACG +149

TGGTGATCCAA +113

SPBC660.05¶ 3.06 GGAAGATCATA −606

SPAC5H10.07 2.51 CGACGATCACG −599

AGAAGATCTTG −563

AGAAGATCCAC −562

CGTGGATCTTC −551

TGTGGATCACT −535

SPAC2E1P3.05c¶ Fungal cellulose binding 
domain protein

1.82 AGTCGATCCTG −141 This study

Other

SPAC1F12.10c NADPH−hemoprotein 
reductase

2.02 CGTCGATCATT −229 This study

TGCCGATCACT −211

SPCC576.03c tpx1 thioredoxin peroxidase 
unfolded protein binding

1.54 CGCCGATCATT −194 This study

TGCAGATCCTG −156

SPCC11E10.01$ Cystathionine beta−lyase 1.37 AGCTAATCATA −989
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Gene Common 
Name Function

Ï RNA-seq 
Δloz1/WT
+Zn
Fold 
increase 
Log2 
(average)

Putative LRE 
Sequence Position

† Loz1-Dependent 

regulation
‡

SPBC12C2.03c Methionine synthase 
reductase

1.18 CGCAGATCTTT −1648

CGTCGATCCTG −1761

CGTCGATCTTG −1731

TGTCGATCACG −1722

TGGTGATCCAA −1696

CGTCGATCTTT −882

SPCC757.12 Alpha−amylase homolog 1.04 GGCCGATCGCT −702

†
Numbers represent the position of the LRE relative to the putative translational ATG codon, with the exception of the adh1AS transcript. For this 

ncRNA the number represents the distance of the LRE relative to the previously mapped transcriptional start in low zinc conditions (Ehrensberger 
et al., 2013).

‡
Genes where Loz1-dependent regulation has been confirmed independently by RNA blot or lacZ-reporter gene analysis, in this study or in other 

reports.

§
These genes were grouped together because SPBC1348.06c shares 100% and ≥99% identity SPBPB2B2.15 and SPAC977.05c at the mRNA level, 

respectively. The sequence of the LREs and surrounding regions are also identical for these genes.

¶
Genes where the putative LRE sequence was found with the region surrounding the peak detected in the ChIP-seq analysis

$
Genes that did not contain a NGNNGATCNNN sequence in the Loz1 ChIP seq. peak or surrounding region. These ChIP-seq peaks contained 

NGNNAATCNNN sequences, which are shown in gray text.

Ï
Functional categories were assigned based on GO term annotations obtained from PomBase GO tool analysis (Lock et al., 2018, The Gene 

Ontology, 2019).
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